Given: $\angle 2$ is supplementary to $\angle 4$

Prove: $\angle 4$ is supplementary to $\angle 5$

Statements	Reasons
1 /2 is supplementary to /4 , $\angle 3 \cong \angle$	6 Given
2 n//p	Corr. 1s Conv.
3 /2=15	All. Into Thom.
4 24 is supp. 1 25	= supp. (mu.
5	
6	

Theorem: Each angle of an equiangular triangle has measure 60°.

Given: Equiangular Triangle ABC

Prove: $m\angle A = m\angle B = m\angle C = 60^{\circ}$

	Statements	Reasons
1.	Equiamola AABC	Given
2.	∠A=ZB=ZC	Def. of equiamonlar
3.	m(A=nLB=nLC	Del. 2 = 65
4.	mfA+mlB+mlc=180°	A Sum Thom
5.	MCA+mlA+mlA=180°	Subst. Pap. of = (3->4)
6.	3 m 2 A = 180°	Dist. Pro.
7.	MCA=60°	D:1. Prp. A =
8.	$m\angle A = m\angle B = m\angle C = 60^{\circ}$	Trans. Pmp. of =

Angles of a Polygon

Polygon: A closed figure made of line segments.

Only two segments can meet at each vertex.

Diagonal: A segment joining two nonconsecutive vertices of a polygon.

- Convex Polygon: 1. Extending each side does not go into the polygon.
 - 2. All diagonals are in the interior of the polygon.

Regular Polygon: A polygon that is both equiangular

and equilateral.

(>	ANF	LS
	Hu	

A B
2
3 4
3 - 17here 11
Reasons
Given
Through any a pts] exatly line.
A sum Thrm.
Add. Pmp. A= (3+3)
LAU Post.
5 nbst. Prp. of = (5 -> 4)

Sum of the interior angles of a polygon:

N=5 [Pentagon]
of Ds = 3
Sum of the = 3 (180)
interior ls

$$I_{Sum} = 540^{\circ}$$

$$n=6$$
 [Hexagon]
of $\Delta s = 4$
 $I_{sum} = 4(180°)$
 $I_{sum} = 720°$

Applying Interior and Exterior Angle Theorems for Polygons

1. What is the sum of the interior angles of an octagon?

$$N = 8$$

$$\frac{T_{sum} = (n-2)180^{\circ}}{T_{sum} = 1080^{\circ}}$$
2. What is the sum of the exterior angles of an octagon?

3. What is the measure of each interior angle of a REGULAR octagon?

$$+ I_1 = \frac{I_{5n}}{n} I_1 = \frac{1080}{8} [I_1 = 135^{\circ}]$$

4. What is the measure of each exterior angle of a REGULAR octagon?

If the measure of one interior angle of a regular polygon is 162°. how many sides does the polygon have?

$$I_{1} = 162^{\circ} \qquad I_{1} = \frac{I_{sum}}{n}$$

$$n \left[162\right] = \frac{(n-2)180}{n} \qquad n \neq 0,$$

$$\#_{0}f_{sides}$$

$$162n = 180n - 360$$

$$-18n = -360$$

$$\boxed{n=20}$$